Titanium Dioxide Nanoparticles Increase Sensitivity in the Next Generation of the Water Flea Daphnia magna
نویسندگان
چکیده
The nanoparticle industry is expected to become a trillion dollar business in the near future. Therefore, the unintentional introduction of nanoparticles into the environment is increasingly likely. However, currently applied risk-assessment practices require further adaptation to accommodate the intrinsic nature of engineered nanoparticles. Combining a chronic flow-through exposure system with subsequent acute toxicity tests for the standard test organism Daphnia magna, we found that juvenile offspring of adults that were previously exposed to titanium dioxide nanoparticles exhibit a significantly increased sensitivity to titanium dioxide nanoparticles compared with the offspring of unexposed adults, as displayed by lower 96 h-EC(50) values. This observation is particularly remarkable because adults exhibited no differences among treatments in terms of typically assessed endpoints, such as sensitivity, number of offspring, or energy reserves. Hence, the present study suggests that ecotoxicological research requires further development to include the assessment of the environmental risks of nanoparticles for the next and hence not directly exposed generation, which is currently not included in standard test protocols.
منابع مشابه
Acute toxicity of titanium dioxide nanoparticles in Daphnia magna and Pontogammarus maeoticus
Titanium dioxide nanoparticles (nTiO2) are the world's second most widely consumed nanomaterial and large quantities of this material enters the aquatic ecosystem annually. Therefore, understanding the effects of nTiO2 on aquatic organisms is very important. The present study used Daphnia magna as a model freshwater organism and Pontogammarus maeoticus as a brackish water organism to evaluate s...
متن کاملToxicity Assessment of Titanium (IV) Oxide Nanoparticles Using Daphnia magna (Water Flea)
OBJECTIVES Titanium dioxide (TiO(2)), a common nanoparticle widely used in industrial production, is one of nano-sized materials. The purpose of this study was to determine the acute and chronic toxicity of TiO(2) using different size and various concentrations on Daphnia magna. METHODS In the acute toxicity test, four concentrations (0, 0.5, 4, and 8 mM) for TiO(2) with 250 or 500 nm and fiv...
متن کاملDaphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles.
Nanoparticles (1-100 nm) comprise the latest technological advances designed to do everything from absorb environmental toxins to deliver drugs to a target organ. Recently, however, they have come under scrutiny for the potential to cause environmental damage. Because compounds in this miniature size range have chemical properties that differ from those of their larger counterparts, nanoparticl...
متن کاملThree-Dimensional Analysis of the Swimming Behavior of Daphnia magna Exposed to Nanosized Titanium Dioxide
Due to their surface characteristics, nanosized titanium dioxide particles (nTiO2) tend to adhere to biological surfaces and we thus hypothesize that they may alter the swimming performance and behavior of motile aquatic organisms. However, no suitable approaches to address these impairments in swimming behavior as a result of nanoparticle exposure are available. Water fleas Daphnia magna expos...
متن کاملGenotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure.
Genotoxic and ecotoxic assessments of widely used nanoparticles, cerium dioxide (CeO(2)), silicon dioxide (SiO(2)) and titanium dioxide (TiO(2)), were conducted on two aquatic sentinel species, the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius. CeO(2) may have genotoxic effects on D. magna and C. riparius, given that the DNA strand breaks increased i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012